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Abstract—In this article, design and analysis of an optimal
orbit control for a communication satellite is investigated. It is
the challenging task and critical importance to control the orbit of
a communication satellite especially the one used for worldwide
communication. The main objective of this work is to evolve a
design based on modelling and simulation of an optimal orbit
controller for a satellite orbiting into a a geostationary orbit.
This article first presents the mathematical model of satellite
orbital dynamics and then illustrates the basic idea and technical
formulation for controller design. The paper briefly explains
the linear quadratic regulator (LQR) design method for optimal
feedback control of the satellite orbital system. This approach
has been considered in order to assure high control performance
of the system. The simulation results show that if the satellite
orbital system follow the control pattern obtained through the
MATLAB simulation, the use of fuel for the thrusters can be
optimized and the satellite orbit perturbation can be controlled
within the specified design requirements. This can increase the
efficiency of the thrusters and the lifetime of the satellite.

Keywords—Communication satellite, modelling,
simulation, geostationary orbit, linear quadratic regulation,
orbit control.

I. INTRODUCTION

THE orbit control of a communication satellite
especially the one used for worldwide

communication is having critical importance. The
Fig. 1 denotes a schematic diagram of communication
satellite that is in the geostationary orbit. Geostationary
means that the satellite’s orbital rate is equal to the
rotational rate of the Earth. As a result, geostationary
satellites appear to hover over a single point on the
earth. Once a satellite is launched in a desired orbit,
it never remains in the ideal orbit. Since satellite is a
free floating body in space therefore it has a disturbance
torque due to the external forces present in space. As
the spacecraft orbits the earth, it is subject to solar
pressure. This solar pressure generates a torque on the
craft with a moment arm (shown in the Fig. 1). The
torque varies in a sinusoidal manner as the vehicle orbits
the Earth. Obviously, if the Earth shades the spacecraft
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Fig. 1. Communication satellite

from the Sun, then there is no solar pressure on the
vehicle. We therefore expect the disturbance due to the
solar pressure to vary in a sinusoidal manner over a 24
hour period. These external forces present in the the
space cause perturbations to satellite’s ideal orbit [1],
[2]. To bring back the satellite into the desired orbit,
on-board thrusters provides in-orbit propulsion. In this
work, satellite orbital system is controlled by the thrust
produced by the on-board thrusters installed in the radial
and tangential directions.

There are some other optimal control strategies also
used and briefly discussed in [3], [4] but the aim of
this work is to model and simulate the satellite orbit
controller with the optimized use of the system inputs or
thrusters to keep the satellite in the desired orbit. The
satellite orbital control system simulation with help of
MATLAB involves mathematical modelling, linearization
of model and applying linear quadratic regulation (LQR)
methodology to design an orbit controller to maintain the
satellite into a desired orbit. If the satellite orbital system
follow the pattern generated by the simulation, the use of
fuel for the thrusters can be optimized and the satellite
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orbit perturbation can be controlled within the specified
design requirements. This can increase the efficiency of
the thrusters and the lifetime of the satellite.

The rest of the article is organized as follows:
In section II, we brief mathematical modeling of
satellite orbital dynamics. The section III describes the
methodology for optimal orbit controller design and
section IV deals with LQR based optimal orbit controller
synthesis for the communication satellite. In section V,
we present simulations and results analysis for the design
and finally, we conclude this paper in section VI by some
remarks and conclusion.

II. MATHEMATICAL MODELLING OF SATELLITE
ORBITAL DYNAMICS

Understanding the system behavior has become
essential to ensure control. Indeed, the ability to
describe and explain the various phenomena involved and
interacting in the satellite orbital dynamics has a large
impact in practice. We can say the aim of modeling is to
evaluate and control the system as much as possible.

Consider the planar motion of an orbiting satellite
in the inverse-square gravitational field of the earth. For
mathematical simplicity, the satellite is approximated as a
particle mass M . The gravitational force exerted on the
satellite is given by

Fg = Mg (1)

The earth’s varying gravitational field with the varying
altitude can be written as [1], [5]

g = g

(
R

R+ h

)2

(2)

where R is the radius of earth and h is the altitude of
satellite from the surface of the earth. If r(t) is the distance
from the center of the earth to the center of satellite,

R+ h = r(t) (3)

Using equation (2) in (1), we get

Fg = Mg

(
R

R+ h

)2

(4)

Now by substituting from (3) into (4), we get

Fg = Mg

(
R

r

)2

(5)

This systems involves circular motion around a fixed
center. Assume that the system is equipped with the
ability to exert a thrust F1 in the radial direction and
F2 in the tangential direction as shown in Fig. 2. The

...Earth.

Reference Axis

.

r

.
θ

..

F1

.
F2

.

Fg

Fig. 2. Circular motion of communication satellite

satellite motion is more conveniently described with polar
coordinates. In this situation, it is often more convenient
to represent all variables in vector form with complex
numbers. Using Fig. 2, we can write satellite position
vector, radial thrust vector, tangential thrust vector, gravity
force vector and inertial force vector as

r(t) = reiθ (6)

F1 = F1re
iθ (7)

F2 = F2re
i(θ+90◦) (8)

Fg = −Mg

(
R

r

)2

reiθ (9)

F = M
d2r(t)

dt2
reiθ (10)

respectively. Now Newton’s law can be applied to complex
force vectors as follows [5]:

F1 + F2 + Fg = F (11)

Using equations (7), (8), (9) and (10) in (11), we get

F1re
iθ+F2re

i(θ+90◦)−Mg

(
R

r

)2

reiθ = M
d2r(t)

dt2
reiθ

⇒ F1e
iθ + iF2e

iθ −Mg

(
R

r

)2

eiθ = M
d2r(t)

dt2
eiθ

⇒ F1e
iθ + iF2e

iθ −Mg

(
R

r

)2

eiθ = M(r̈eiθ + i2ṙθ̇eiθ

+irθ̈eiθ − rθ̇2eiθ)
(12)

By canceling the common vector eiθ and equating the real
and imaginary part respectively of (12), produces the two
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second order differential equations as follow:{
F1 = Mr̈ −Mrθ̇2 +Mg

(
R
r

)2
F2 = 2Mṙθ̇ +Mrθ̈

(13)

To simplify the numerical problems, the time, distance and
force variable are normalized into dimensionless quantities
in the following way:{

τ = t/(R/g)1/2; ρ = r/R;

u1 = F1/(Mg); u2 = F2/(Mg)
(14)

Hence, using (14), the equations of satellite motion (13)
can be written as{

u1 = ρ
′′ − ρθ

′2 + 1
ρ2

u2 = 2ρ
′
θ
′
+ ρθ

′′ (15)

where the prime symbol (′) denotes d/dτ.

A. Non-linear state space model

To obtain the non-linear model of satellite orbital
dynamics, the state and input vectors of the model are
chosen to describe all information about the system in
following way:

x =


x1

x2

x3

x4

 , u =

[
u1

u2

]

where x1 = ρ, x2 = θ, x3 = ẋ1 = ρ̇, x4 = ẋ2 =
θ̇ and ẋ3 = ρ̈, ẋ4 = θ̈.
Hence a non-linear state space model ẋ = f(x, u) of
satellite orbital dynamics (15) is obtained as under

ẋ1 = x3

ẋ2 = x4

ẋ3 = x1x
2
4 − 1

x2
1
+ u1

ẋ4 = −2x3x4

x1
+ 1

x1
u2

(16)

B. Linear state space model

Suppose that satellite is to maintaine in circular
geo-stationary orbit of the earth where angular velocity
of the satellite orbiting is ω = 15.04 degree per hour.
We assume that steady state is maintained only by the
gravitational force, so that the steady state components
of two thrusts vectors are zero. To minimize energy
consumption, thrusts are only applied to take transient
corrective action to eliminate error. Thus at steady state,

u1 = 0; u2 = 0; x3 = 0; x4(angular speed) = constant

We now linearize the non-linear system (16) about the
steady state solution (say operating point) to obtain the
system in the form of the linear control system ẋ(t) =
Ax(t) + Bu(t). By linearizing the function ẋ = f(x, u)
about x = [x1 0 0 x4]

T and u = [0 0]T , we have

f̂(x, u) = f
′

x(x, u)x+ f
′

uu ≡ Ax(t) +Bu(t) (17)

where,



A = f
′

x(x, u) =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f1
∂x4

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f2
∂x4

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

∂f3
∂x4

∂f4
∂x1

∂f4
∂x2

∂f4
∂x3

∂f4
∂x4



=


0 0 1 0

0 0 0 1

x2
4 +

2
x3
1

0 0 2x1x4

0 0 −2x4

x1
0



B = f
′

u(x, u) =


∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2

∂f3
∂u1

∂f3
∂u2

∂f4
∂u1

∂f4
∂u2

 =


0 0

0 0

1 0

0 1
x1


(18)

Here we find the fourth order linear model and apply to
situation in which not only the angular speed x4(t) or ω(t)
needs to be regulated but angular position θ(t) must also
be accurately controlled for complete control of satellite.
Since,

ω = 15.0◦/h = π/43200 radian/sec.

This corresponds to a normalized angular speed of

x4 = (R/g)1/2ω = 0.0587

with R (radius of earth) equal to 6378 km.
Finally, on substituting the x1 = ρ = 6.6108 and
x4 = 0.0587 in state equation given by (17) and (18)
and considering angular position x2 = θ(t) and angular
speed x4 = ω(t) as a output vector of the system, we
can established the complete linear state space model of
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satellite orbital dynamics as:


ẋ1

ẋ2

ẋ3

ẋ4


︸ ︷︷ ︸

ẋ

=


0 0 1 0

0 0 0 1

0.01036 0 0 0.7757

0 0 −0.01775 0


︸ ︷︷ ︸

A


x1

x2

x3

x4


︸ ︷︷ ︸

x

+


0 0

0 0

1 0

0 0.1513


︸ ︷︷ ︸

B

[
u1

u2

]
︸ ︷︷ ︸

u

[
θ

ω

]
︸︷︷︸
y

=

[
0 1 0 0

0 0 0 1

]
︸ ︷︷ ︸

C


x1

x2

x3

x4


︸ ︷︷ ︸

x

+

[
0 0

0 0

]
︸ ︷︷ ︸

D

[
u1

u2

]
︸ ︷︷ ︸

u

(19)

III. DESIGN PHILOSOPHY

In this section, a Linear Quadratic Regulator (LQR)
design method is discussed, which is a part of optimal
control strategy and provides a linear state space
controller. The LQR design is stable and robust (except
in the case where the system is not controllable) and it is
based on the selection of feedback controller gains such
that the system performance index or cost function can be
minimized [6]–[9]. In this design method, system must be
described by state space model [6]–[9]{

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rr

y = Cx+Du, y ∈ Rm
(20)

and the performance index J is defined as

J(x(t), u(t), t) =

∫ ∞

0

[
e(t)TQe(t) + u(t)TRu(t)

]
dt

=

∫ ∞

0

[
(z(t)− x(t))TQ(z(t)− x(t)) + u(t)TRu(t)

]
dt

(21)

where x(t) is the nth state vector, y(t) is the mth output
vector, z(t) is the nth desired state vector, u(t) is the rth

control vector and e(t) = z(t) − x(t) is the error vector.
If our objective is to keep the state x(t) near zero i.e.
z(t)=0, C=I, the error e(t) = 0 − x(t) itself is the state.
This situation often arises in satellite orbital system, where
plant is subjected to unwanted disturbances that perturb

original state. In this case, the performance index J can
be written as [6]–[9]

J(x(t), u(t), t) =

∫ ∞

0

[
x(t)TQx(t) + u(t)TRu(t)

]
dt

(22)
The matrix Q and R are known as error weighted and
control weighted matrix respectively. In order to keep
the error e(t) small and error squared non-negative,
the integral of the expression 1

2e(t)
TQe(t) should be

non-negative and small. Thus, the matrix Q must be
positive semi-definite. Due to the quadratic nature of the
weightage, we have to pay more attention to large errors
than small errors. On the other hand, the quadratic nature
of the control cost expression 1

2u(t)
TRu(t) indicates that

one has to pay higher cost for larger control effort. Since
the cost of control has to be a positive quantity, the matrix
R should be a positive definite.

The crucial and difficult task in LQR controller design
is a choice of the weighting matrices. We generally
select weighting matrices Q and R to satisfy expected
performance criterion. The different Q and R values give
different system response. The system will be more robust
to disturbance and the settling time will be shorter if Q is
larger (in certain range). But there is no straightforward
way to select these weighting matrices and it is usually
done through an iterative simulation process. In this work,
we apply the Bryson’s rule for a simple and reasonable
choice of the matrices Q and R. According to the rule,
we select Q and R diagonal [8], withQii = 1

maximum acceptable value of x2
i
, i ∈ {1, 2, . . . , l}

Rjj = ρ
[

1
maximum acceptable value of u2

j

]
, j ∈ {1, 2, . . . , k}

(23)

where ρ is a constant which establish the trade-off between
controlled output and control input signal in the following
way:

• When we chose ρ very large, the most effective way
to minimize J is to employ a small control input, at
the expense of a large controlled output.

• When we chose ρ very small, the most effective way
to minimize J is to obtain a very small controlled
output, even if this is achieved at the expense of
employing a large control input.

Now the LQR design objective can be formulated as: find
the control input u(t), t ∈ [0 ∞) to obtain feedback
controller gain matrix K that gives optimal control vector

u∗(t) = −Kx∗(t) (24)

to steer the system described by (20) from non-zero
state to zero state such that performance index (22) is
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minimized. The control gain matrix K known as Kalman
gain is given by

K = R−1BTP (25)

where, P , the n×n constant, positive definite, symmetric
matrix, is the solution of the nonlinear, matrix algebraic
Riccati equation (ARE) [6]–[9]

ATP + PA− PBR−1BTP +Q = 0 (26)

and the optimal trajectory x∗ is the solution of

ẋ∗(t) =
[
A−BR−1BTP

]
x∗(t) (27)

The implementation configuration of the closed loop
optimal control is shown in Fig. 3.

Fig. 3. Closed-loop optimal control

IV. ORBIT CONTROLLER DESIGN

In this section our objective is to evolve a LQR based
orbit controller design for a satellite orbiting into a circular
orbit. As we know that once a satellite is launched in
a desired orbit, it never remains in that ideal orbit. The
external forces present in space cause perturbations to
this ideal orbit. The schematic path of satellite operational
orbit and perturbed orbit for 24 hours are shown in Fig. 4.
To bring back the satellite into the desired orbit, on-board
thrusters provide in-orbit propulsion. These thrusters keep
satellite in the desired orbit. In this work, the orbit of
the satellite is controlled by the thrust produced by the
on-board thrusters installed in the radial and tangential
direction. However it is dictated by the controllability
requirements.
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Fig. 4. Operational and drift path of satellite

A. Kalman’s controllability test
State controllability involves the manner in which the

input to the system is able to influence all state variables.
Using Kalman’s matrix model [9]

CO =

[
B

... AB
... A2B

... · · ·
... An−1B

]
(28)

of the system, it can be shown that the system is
controllable if and only if the controllability matrix has
rank n, where n is order of the system [8], [9]. For
the linearized satellite orbital system (19), we can easily
compute the controllability matrix (28) as

CO =
[
B AB A2B A3B

]
=

[ 0 0 1 0 0 0.1173 −0.0034 0
0 0 0 0.1513 −0.0177 0 0 −0.0021
1 0 0 0.1173 −0.0034 0 0 −0.0004
0 0.1513 −0.0177 0 0 −0.0021 0.0001 0

]
(29)

One can verify that rank of CO is 4 and hence the
satellite orbital system is controllable. Now it is interesting
to ask following question. What happens when one of
the thrusters become in-operative? For this purpose set
u2 = 0 and hence B reduces to B1 = [0 0 1 0]

T
. So, the

controllability matrix is given by

C1O =
[
B1 AB1 A2B1 A3B1

]
=


0 1 0 −0.0034
0 0 −0.0177 0
1 0 −0.0034 0
0 −0.0177 0 0.0001

 (30)

C1O has the rank 3 and hence the system is not
controllable with the radial thruster alone. On the other
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hand if the radial thrusters fail i.e. u1 = 0. In that case
matrix B reduces to B2 = [0 0 0 0.1513]

T and this gives
controllability matrix as

C2O =
[
B2 AB2 A2B2 A3B2

]
=


0 0 0.1174 0
0 0.1513 0 −0.0021
0 0.1174 0 −0.0004

0.1513 0 −0.0021 0

 (31)

Note that C2O has rank 4, so the system is controllable
with input u2 only. Since u1 is radial thruster and u2 is
tangential thruster, we see that the loss of radial thruster
do not destroy controllability where as loss of tangential
thrusters do. Thus it is possible to stabilize the system
with only thrust in the tangential direction.

B. Design specifications

After checking the controllability of the system it has
been ascertained that there can be two different situations
to stabilize the satellite. In first case the position of
satellite will be controlled with both radial and tangential
thrust. Second case would be dealt the control of angular
rate with the tangential thrust only. In this way there will
be two different possibilities and control objectives for
maintaining the satellite into its desired or assigned orbit.
In both cases it is required to have the following.

• Time required for steering the system completely
from perturbed state to original state should be
minimum.

• The overshoot of the system should not exceed more
than 20%.

• The thrust magnitude of u1 and u2 are minimum and
limited by the allowable energy consumption.

C. Orbit control with radial and tangential thrust

In the first case the orbit of satellite is being controlled
with radial and tangential thrust. The linearized satellite
orbital model equations are of fourth order and apply
to the situation in which not only the angular speed
ω(t) or x4(t) needs to be regulated but the angular
position θ(t) must also be controlled.

At first, we select the weighting matrices Q and R,
based on Bryson’s rule as discussed in section III. The
matrices Q and R for orbit control problem are selected

as follow:

Q =


1 0 0 0
0 1 0 0
0 0 0.5 0
0 0 0 0.7

 (32)

R =

[
1 0
0 1

]
(33)

We now compute a controller gain matrix K which steers
the satellite orbital system (19) from non-zero state to
zero state i.e. from perturbed state to desired original state
using the control law given by (24). The computation is
carried out using MATLAB code K=lqr(A,B,Q,R) and
obtained the following control matrix:

K =

[
1.0074 −0.0781 1.5771 0.5651
0.0782 0.9969 0.0855 3.7998

]
(34)

D. Orbit control with tangential thrust

The controllability of system model (19) shows that
the satellite can also be controlled with only single
radial thrust by controlling the angular rate ω(t) of the
satellite but with a constant non-zero offset error in
angular position θ(t). Because of the reason the control
of angular rate usually does not ensure exact alignment of
angular position of the satellite. Moreover this controlling
technique can be employed in this situation that the radial
thruster has failed down and only the tangential thruster is
operative. If this constant nonzero offset error in angular
position θ(t) is tolerable then the second row of system
model equation (19) should be removed. This reduced
satellite orbit model can be written asẋ1

ẋ3

ẋ4

 =

 0 1 0
0.01036 0 0.7757

0 −0.01775 0


︸ ︷︷ ︸

A

x1

x3

x4



+

 0
0

0.1513


︸ ︷︷ ︸

B

[
u2

]
(35)

To compute the control matrix K for this reduced satellite
model, again we select the weighting matrices Q and R
as 

Q =

1 0 0

0 0.5 0

0 0 0.7


R = 1

(36)
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The computation is carried out using MATLAB code
K=lqr(A,B,Q,R) and obtained the following control
matrix:

K =
[
1.0880 4.1533 6.5799

]
(37)

V. SIMULATION AND RESULTS ANALYSIS

In this section, simulations are demonstrated with
help of MATLAB to show the control of satellite orbit
with both possible options i.e. orbit control with radial
and tangential thrust and orbit control with tangential
thrust only. The Fig. 5 shows that controlled states of
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Fig. 5. Controlled states of satellite orbital system

satellite orbital system with radial and tangential thrust.
We can see that our computed optimal control matrix
(34) successfully steer the system from non-zero state
to zero state. The Fig. 6 demonstrates the graphical
representations of geo-stationary orbit with approximately
8.21 meters drift from nominal satellite orbit. The Fig. 6
also shows that the perturbed orbit reached to nominal
orbit within 8 seconds only. The optimal steering control
profile of satellite orbital system with two systems inputs
are also shown in the Fig. 7.

On the other hand if the radial thrusters fails and
tangential thruster works alone in the system. In this case
the simulation of orbit control with tangential thrust is
also performed and results are shown in Fig. 8 and Fig. 9.
The Fig. 8 shows that controlled states of satellite orbital
system with tangential thruster only and Fig. 9 illustrate
drift of geostationary orbit with approximately 16.5 meters
from nominal orbit and its steering profile from drift orbit
to desired orbit in about 15 seconds.
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Fig. 6. Radial error or drift vs time
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VI. CONCLUSION

In this article, LQR based optimal orbit control for the
communication satellite is investigated. The satellite orbit
dynamical equations along with it’s state space model
are first presented in the paper and than the basic ideas
and technical formulations for designing an optimal orbit
controller to maintain the satellite into a desired circular
orbit are briefly illustrated. If the satellite orbital system
follow the pattern generated by the MATLAB simulation,
the use of fuel for the thrusters can be optimized and
the satellite orbit perturbation can be controlled within
the specified design requirements. This can increase the
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Fig. 9. Radial error or drift vs time with tangential thruster

efficiency of the thrusters and the lifetime of the satellite.
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